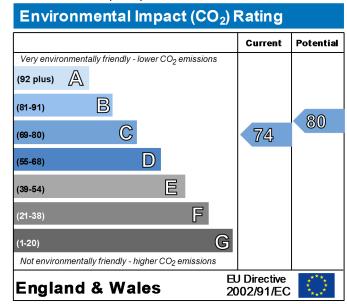
Energy Performance Certificate



98, High Street Cricklade SWINDON SN6 6AA Dwelling type: Top-floor flat
Date of assessment: 07 October 2008
Date of certificate: 15 May 2014
Reference Number: Preview only
Total floor area: 64 m²

This home's performance is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO₂) emissions.

Energy Efficiency Rat	ing			
			Current	Potential
Very energy efficient - lower running costs				
(92 plus) A				
(81-91) B				82
(69 -80)			75	
(55-68)				
(39-54)				
(21-38)	F			
(1-20)		G		
Not energy efficient - higher running costs				
England & Wales			J Directive 002/91/EC	* * *

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likelyto be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO₂) emissions. The higher the rating the less impact it has on the environment.

Estimated energy use, carbon dioxide (CO₂) emissions and fuel costs of this home

	Current	Potential
Energy use	203 kWh/m² per year	150 kWh/m² per year
Carbon dioxide emissions	2.2 tonnes per year	1.6 tonnes per year
Lighting	£62 per year	£31 per year
Heating	£270 per year	£214 per year
Hot water	£75 per year	£75 per year

Based on standardised assumptions about occupancy, heating patterns and geographical location, the above table provides an indication of how much it will cost to provide lighting, heating and hot water to this home. The fuel costs only take into account the cost of fuel and not any associated service, maintenance or safety inspection. This certificate has been provided for comparative purposes only and enables one home to be compared with another. Always check the date the certificate was issued, because fuel prices can increase over time and energy saving recommendations will evolve.

To see how this home can achieve its potential rating please see the recommended measures.

This EPC and recommendations report may be given to the Energy Saving Trust to provide you with information on improving your dwellings's energy performance.

For advice on how to take action and to find out about offers available to help make your home more energy efficient, call **0800 512 012** or visit www.energysavingtrust.org.uk/myhome

About this document

The Energy Performance Certificate for this dwelling was produced following an energy assessment undertaken by a qualified assessor, accredited by RICS, to a scheme authorised by the Government. This certificate was produced using the RdSAP 2005 assessment methodology and has been produced under the Energy Performance of Buildings (Certificates and Inspections) (England and Wales) Regulations 2007 as amended. A copy of the certificate has been lodged on a national register.

Assessor's accreditation number: RICS200318
Assessor's name: Charles Brown
Company name/trading name: Cotswold Surveyors

Address: 227

London Road, Cheltenham, GL52 6HZ

Phone number: 08453005452 Fax number: 08453005453

E-mail address: charlesbrown@cotswoldsurveyors.co.uk

Related party disclosure:

If you have a complaint or wish to confirm that the certificate is genuine

Details of the assessor and the relevant accreditation scheme are as above. You can get contact details of the accreditation scheme from their website at http://www.rics.org together with details of their procedures for confirming authenticity of a certificate and for making a complaint.

About the building's performance ratings

The ratings on the certificate provide a measure of the building's overall energy efficiency and its environmental impact, calculated in accordance with a national methodology that takes into account factors such as insulation, heating and hot water systems, ventilation and fuels used. The average Energy Efficiency Rating for a dwelling in England and Wales is band E (rating 46).

Not all buildings are used in the same way, so energy ratings use 'standard occupancy' assumptions which may be different from the specific way you use your home. Different methods of calculation are used for homes and for other buildings. Details can be found at www.communities.gov.uk/epbd.

Buildings that are more energy efficient use less energy, save money and help protect the environment. A building with a rating of 100 would cost almost nothing to heat and light and would cause almost no carbon emissions. The potential ratings in the certificate describe how close this building could get to 100 if all the cost effective recommended improvements were implemented.

About the impact of buildings on the environment

One of the biggest contributors to global warming is carbon dioxide. The way we use energy in buildings causes emissions of carbon. The energy we use for heating, lighting and power in homes produces over a quarter of the UK's carbon dioxide emissions and other buildings produce a further one-sixth.

The average household causes about 6 tonnes of carbon dioxide every year. Adopting the recommendations in this report can reduce emissions and protect the environment. You could reduce emissions even more by switching to renewable energy sources. In addition there are many simple every day measures that will save money, improve comfort and reduce the impact on the environment. Some examples are given at the end of this report.

Visit the Government's website at www.communities.gov.uk/epbd to:

- Find how to confirm the authenticity of an energy performance certificate
- Find how to make a complaint about a certificate or the assessor who produced it
- Learn more about the national register where this certificate has been lodged the Government is the controller of the data on the register
- Learn more about energy efficiency and reducing energy consumption

Recommended measures to improve this home's energy performance

98, High Street Cricklade SWINDON SN6 6AA Date of certificate: 15 May 2014 Reference Number: Preview only

Summary of this home's energy performance related features

The following is an assessment of the key individual elements that have an impact on this home's performance rating. Each element is assessed against the following scale: Very poor / Poor / Average / Good / Very good.

Element	Description	Current Performance		
	Description	Energy Efficiency	Environmental	
Walls	Solid brick, as built, insulated (assumed)	Good	Good	
Roof	Pitched, 100mm loft insulation	Average	Average	
Floor	(other premises below)	-	-	
Windows	Partial double glazing	Poor	Poor	
Main heating	Boiler and radiators, mains gas	Good	Good	
Main heating controls	Programmer, no room thermostat	Very poor	Very poor	
Secondary heating	None	-	-	
Hot water	From main system	Good	Good	
Lighting	No low energy lighting	Very poor	Very poor	
Current energy efficien	cy rating	C 75		
Current environmental	impact (CO ₂) rating		C 74	

Low and zero carbon energy sources

None

Recommendations

The measures below are cost effective. The performance ratings after improvement listed below are cumulative, that is they assume the improvements have been installed in the order that they appear in the table.

L	Typical savings	Performance ratings after improvement		
Lower cost measures (up to £500)	per year	Energy efficiency	Environmental impact	
1 Increase loft insulation to 270mm	£29	C 77	C 76	
2 Low energy lighting for all fixed outlets	£26	C 80	C 77	
3 Upgrade heating controls	£33	B 82	C 80	
Total	£88			
Potential energy efficiency rating		B 82		
Potential environmental impact (CO ₂) rating			C 80	

Further measures to achieve even higher standards

The further measures listed below should be considered in addition to those already specified if aiming for the highest possible standards for this home. However you should check the conditions in any covenants, planning conditions, warranties or sale contracts.

4 Replace single glazed windows with low-E double glazing	£23	B 84	B 83
Enhanced energy efficiency rating		B 84	
Enhanced environmental impact (CO ₂) rating			B 83

Improvements to the energy efficiency and environmental impact ratings will usually be in step with each other. However, they can sometimes diverge because reduced energy costs are not always accompanied by a reduction in carbon dioxide (CO₂) emissions.

98, High Street, Cricklade, SWINDON, SN6 6AA 15 May 2014 RRN: Preview only

About the cost effective measures to improve this home's performance ratings

If you are a tenant, before undertaking any work you should check the terms of your lease and obtain approval from your landlord if the lease either requires it, or makes no express provision for such work.

Lower cost measures (typically up to £500 each)

These measures are relatively inexpensive to install and are worth tackling first. Some of them may be installed as DIY projects. DIY is not always straightforward, and sometimes there are health and safety risks, so take advice before carrying out DIY improvements.

1 Loft insulation

Loft insulation laid in the loft space or between roof rafters to a depth of at least 270mm will significantly reduce heat loss through the roof; this will improve levels of comfort, reduce energy use and lower fuel bills. Insulation should not be placed below any cold water storage tank, any such tank should also be insulated on its sides and top, and there should be boarding on battens over the insulation to provide safe access between the loft hatch and the cold water tank. The insulation can be installed by professional contractors but also by a capable DIY enthusiast. Loose granules may be used instead of insulation quilt; this form of loft insulation can be blown into place and can be useful where access is difficult. The loft space must have adequate ventilation to prevent dampness; seek advice about this if unsure. Further information about loft insulation and details of local contractors can be obtained from the National Insulation Association (www.nationalinsulationassociation.org.uk).

2 Low energy lighting

Replacement of traditional light bulbs with energy saving recommended ones will reduce lighting costs over the lifetime of the bulb, and they last up to 12 times longer than ordinary light bulbs. Also consider selecting low energy light fittings when redecorating; contact the Lighting Association for your nearest stockist of Domestic Energy Efficient Lighting Scheme fittings.

3 Heating controls (room thermostat and thermostatic radiator valves)

A room thermostat will increase the efficiency of the heating system by enabling the boiler to switch off when no heat is required; this will reduce the amount of energy used and lower fuel bills. Thermostatic radiator valves should also be installed, to allow the temperature of each room to be controlled to suit individual needs, adding to comfort and reducing heating bills provided internal doors are kept closed. For example, they can be set to be warmer in the living room and bathroom than in the bedrooms. Ask a competent heating engineer to install thermostatic radiator valves and a fully pumped system with the pump and the boiler turned off by the room thermostat. Thermostatic Radiator valves should be fitted to every radiator except for the radiator in the same room as the room thermostat. Remember the room thermostat is needed as well as the thermostatic radiator valves, to enable the boiler to switch off when no heat is required.

About the further measures to achieve even higher standards

Further measures that could deliver even higher standards for this home. You should check the conditions in any covenants, planning conditions, warranties or sale contracts before undertaking any of these measures. If you are a tenant, before undertaking any work you should check the terms of your lease and obtain approval from your landlord if the ease either requires it, or makes no express provision for such work.

4 Double glazing

Double glazing is the term given to a system where two panes of glass are made up into a sealed unit. Replacing existing single-glazed windows with double glazing will improve comfort in the home by reducing draughts and cold spots near windows. Double glazed windows may also reduce noise, improve security and combat problems with condensation. Building Regulations apply to this work, so either use a contractor who is registered with a competent persons scheme¹ or obtain advice from your local authority building control department.

What can I do today?

Actions that will save money and reduce the impact of your home and the environment include:

- Ensure that you understand the dwelling and how its energy systems are intended to work so as to obtain the maximum benefit in terms of reducing energy use and CO₂ emissions.
- Check that your heating system thermostat is not set too high (in a home, 21°C in the living room is suggested) and use the timer to ensure you only heat the building when necessary.
- Turn off lights when not needed and do not leave appliances on standby. Remember not to leave chargers (e.g. for mobile phones) turned on when you are not using them.
- Close your curtains at night to reduce heat escaping through the windows.
- If you're not filling up the washing machine, tumble dryer or dishwasher, use the half-load or economy programme.